PHYSICAL / INORGANIC CHEMISTRY

DPP No. 8

Total Marks: 36

Max. Time: 36 min.

Topic: Coordination Compounds

Topic .	- Coordination Compo	ounus				
Single		' negative marking) Q.′ e marking) Q.10 to Q.12		(3 marks, 3 min.) (3 marks, 3 min.)	M.M., Min. [27, 27] [9, 9]	
1.	a magnetic balance at the following set of inf (i) The transition meta (ii) The net dipole mor (iii) The transition met	ll is sp³d hybridised ment of complex is ≠ zero all is dsp³ hybridised ment of the complex is z trigonal bipyramidal	nd lengths are equa		t. Then, which of	
•	IA :		. NILLOU	David word		
2.	It is an experiment fact that : DMG + Ni(II)salt Which of the following is wrong about this red (A) It is a non–ionic complex (C) Ni(II) is sp³ hybridised		·			
3.	P: $[FeF_g]^{3-}$; R: $[V(H_2O)_g]^{3+}$;	S : [Ti(H ₂ O) ₆] ³⁺ neir paramagnetic mome	ent (spin only) is :	= S (D) P > R > Q	ı > S	
4.	When the complex $K_{\epsilon}[(CN)_{\epsilon} Co-O-Co(CN)_{\epsilon}]$ is oxidised by bromine into $K_{\epsilon}[(CN)_{\epsilon} Co-O-Co(CN)_{\epsilon}]$. Then which of the following statements will be true about this change: (In both complex Co have $t_{2g}^{\ \ \epsilon}$, $e_{g}^{\ \ 0,0}$ configuration): (A) $Co(II)$ is oxidised in $Co(III)$ (B) The O-O bond length will increase (C) The O-O bond length will decrease (D) 'A' & 'B' both are correct					
5.	The molecules having (A) SeF ₄ , XeO ₂ F ₂	the same hybridization, (B) SF ₄ , XeF ₂	shape and number (C) XeOF ₄ , TeF			
6.	(a) The crystal field-splitting for Cr^{3+} ion in octahedral field increases for ligands I^- , H_2O , NH_3 , CN^- and the order is:					
	(A) $I^- < H_2^- O < NH_3^- < CN^-$		(B) $CN^- < I^- < H_2O < NH_3$			
	(C) CN ⁻ < NH ₃ < H ₂ O < I ⁻		(D) $NH_3 < H_2O < I^- < CN^-$			
	(b) In which of the following configurations will there be the possibility of both para and diamagnestism, depending on the nature of the ligands?					

(C) d⁶

(D) d⁵

(B) d³

(A) d⁷

7. (a) The complex for which the calculation of crystal field splitting can be most easily absorption spectrum, will be :			be most easily don	e, by knowing its					
	(A) [TiCl ₆] ²⁻		(C) [Ti(CN) ₆] ³⁻	(D)[CoF ₆] ³⁻					
(b) In which of the following complex ion, the metal ion will have t_{2g}^6,e_g^0 configuration as					cording to CFT:				
	(A) [FeF ₆] ³⁻	(B) $[Fe(CN)_6]^{3-}$	(C) $[Fe(CN)_6]^{4-}$	(D) None of th	iese				
8.	Complex	P Q	value) for the following co R o(CN) ₆] ³⁻ [Co(NH ₃) ₆] ³ (C) S > R > P > Q	S	> S				
9.		-	complex formed will be :	(D) triangal hir	ouramidal				
0	(A) Tetrahedral	(B) square planar	(C) octahedral	(D) triangal bip	oyramidai				
Comprehension # (Q.10 to Q.12) Werner performed two experiments: Expt-1: He prepared a compound X by reacting KCI with PtCI ₄ . The compound X didn't give any ppt. with AgNO ₃ but gave electrical conductance corresponding to 3 ions.									
	Expt-2: He took 0.3 required 28.5 ml of Hence,		passed through a cation e	exchange resin & the	e acid coming out				
10.	The formula of the o	compound X is : (B) K ₂ [PtCl ₄]	(C) K ₂ [PtCl ₆]	(D) K[PtCl₄]					
11.	The hybridization in	2 0							
	(A) sp ³	(B) d ² sp ³	(C) sp ³ d ²	(D) dsp ³					
12.	The complex CrCl ₃ .	The complex CrCl ₃ .6H ₂ O can be rightly represented as :							
	(A) $[Cr(H_2O)_4Cl_2]Cl$ (C) $[Cr(H_2O)_3Cl_3]3H_2O$		(B) [Cr(H ₂ O) ₆]Cl ₃ (D) [Cr(H ₂ O) ₅ Cl]Cl ₂	(B) $[Cr(H_2O)_6]CI_3$ (D) $[Cr(H_2O)_5CI]CI_2$					
		Ansv	ver Key						
			OPP No. # 8						
1.	B 2		3. A 4	i. c	5. A				
6.	(a) A (b) C 7		3. B 9	9. A	10. C				
11.	B 1	2 . B							

CLICK HERE >>

Hints & Solutions

PHYSICAL / INORGANIC CHEMISTRY

DPP No. #8

1. According to the question, k, [Ni(CN),] is diamagnetic and square pyramidal with non-zero dipole moment.

$$\begin{array}{c|c} & CN^{-} \\ \hline & CN^{-}$$

2. The complex is

$$CH_3 - C = N$$

$$CH_3 - C = N$$

$$O - H - Q$$

$$Square planar (dsp2)$$

(A) On the basis of number of electrons the correct order is P > Q > R > S.

*	with the education of the control of				
	Complex		No. of unpaired electrons.		
	(P)	[FeF _c] ³ −	5		
	(Q)	[CoF _e]3-	4		
	(R)	[V(H ₂ O) ₆] ³ *	2		
	(S)	[Ti(H,O),]3+	1.		

- (C) In the first complex, ligand is O₂²⁻ which is oxidised into O₂¹⁻ hence, O O bond length decreases.
- 5. SeF₄ and XeO₂F₂ are both sp³d hybridized, trigonal bipyramidal and see-saw shaped with 1 lone pair of electrons each.

SF₄ has 1 lone pair, XeF₂ has 3 lone pairs. XeOF₄ is square pyramidal with 1 lone pair, TeF₄ is see-saw shaped with 1 lone pair, SeCl₄ has see-saw shape with 1 lone pair, XeF₄ has planar shape with 2 lone pairs.

- (a) Increase Order of ligands Strength I⁻ < H₂O < NH₃ < CN⁻
 - (b) SFL $d^6 = t_{2g}^{-2, 2, 2} eg^{0.0}$ diamagnetic WFL $d^6 = t_{2g}^{-2, 1, 1} eg^{1.1}$ Paramagnetic.
- 7. (a) Since this is a d1 system.
 - (b) In $[Fe(CN)_6]^{4-}$; Fe(II) is t_{2a}^{6} , e_a^{0} due to strong ligands.
- CFSE depends on the strength of ligands which follows order CN⁻ > NH_s > H_sO > F⁻.

On the basis of nature of ligands the correct order is Q > R > S > P.

- 9. $2[Ag(CN)_2]^- + Zn \longrightarrow 2Ag + [Zn(CN)_4]^{2-}$. $Zn^{2+} \longrightarrow 3d^{10}$, Shape of $[Zn(CN)_4]^{2-}$ is tetrahedral.

d²sp³

12. Meq. of complex = Meq. of base

$$\frac{0.319}{268.5} \times 1000 \times \text{V.F.} = 0.125 \times 28.5 \times 1$$

V.F. ≈ 3